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LETTER TO THE EDITOR 

Interface layering transitions in novel geometries 

J M Yeomansl-, M R Swift? and Philip M DuxburyS 
t Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford 
OX1 3NP, U K  
f Department of Physics and Astronomy, Michigan State University, East Lansing, 
MI 48824, USA 

Received 6 July 1988 

Abstract. We show that a novel choice of boundary conditions leads to interfaces which 
unbind from a surface through a series of layering transitions. Even though the models 
have only nearest-neighbour interactions the transitions take place at zero temperature. 
Series expansions are used to probe the behaviour of the phase boundaries as the tem- 
perature is increased from zero: 

There has recently been considerable work on the properties of interfaces (Dietrich 
1988, Sullivan and Telo da Gama 1986). In particular it has been known for some 
time that below the roughening temperature, in the presence of a lattice, interface 
phase transitions, such as the unbinding from a surface, can take place through a series 
of layering transitions (de Oliveira and Griffiths 1978, Pandit et a1 1982). In this letter 
we consider the behaviour of interfaces on simple lattices in which a novel choice of 
boundary conditions leads to a sequence of such layering transitions, even at zero 
temperature. Although such behaviour is well established in models with long-range 
interactions, we believe that the systems described here are the first to show such an 
effect with interactions between nearest neighbours only. Because of the simple nature 
of the Hamiltonians considered it is a relatively straightforward task to use low- 
temperature series to study the behaviour of the boundaries between the different 
interface phases as the temperature is increased. 

For comparison we first describe the behaviour of an Ising model on a hypercubic 
lattice with the interface introduced through the most obvious choice of boundary 
conditions (Duxbury and Yeomans 1985). Letting the subscript i represent the layers 
and j the spins within a layer an interface is forced into the system by allowing the 
spins in layer i = 0 to take the value -1 and those in layer i =CO to be equal to +1 as 
shown in figure l ( a ) .  The spins then interact according to the Hamiltonian 

where j ,  j '  are nearest neighbours within a layer. 
The schematic phase diagram of this model for low temperatures is shown in figure 

1 ( b ) .  At zero temperature and zero field the interface can lie in any position parallel 
to the boundaries of the system. This degeneracy is broken oniy at finite temperatures 
by entropic terms in the free energy which tend to favour the unbinding of the interface 
from the surface at i = 0 as H + O+. 
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Figure 1. ( a )  A standard interface geometry. Spins depicted in bold type are fixed. ( b )  
A schematic representation of the interface layering transitions which result from this 
choice of boundary conditions. 

However, we now show that a qualitatively different behaviour is seen if a novel 
choice of boundary conditions is considered. The lattice we will study consists of 
stacked square nets. An interface is introduced by making cuts along intersecting face 
diagonals and fixing the spins on the resultant boundaries to take the value -1 as 
shown in figure 2(a). The Hamiltonian considered is similar to (1) but with J describing 
the interactions in planes perpendicular to both boundaries (like that shown in figure 
2(a))  and Jo describing interactions between the planes. We define q1 as the number 
of out-of-plane neighbours of each spin. 

The field term favours an interface which everywhere lies next to the boundaries 
whereas the interaction J favours a configuration in which the interface ‘cuts the 
corner’. We shall define the interface position as n, the numbers of rows of - spins 
at the corner. For example, figure 2( a )  shows the interface n = 2. Comparing the 
ground-state energies for different interface positions shows that there is layering even 
at zero temperature with the boundary between the phases n and n + 1 given by 

(H/J)n:n+l=2/(2n + 1)  (2) 

as shown in figure 2(b). 
To investigate the effect of finite temperatures on the layering transitions we have 

performed a low-temperature expansion to second order to obtain the free energy f n  
of each phase n. Defining the Boltzmann factors 

x = exp( -2pJ) w = exp(-2pJo) h = exp( -2pH) (3) 

gives, for the difference in reduced free energy per layer between the phases n afid n + 1, 
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Figure 2. ( a )  An interface geometry which leads to layering transitions at zero temperature. 
Spins depicted in bold type are fixed and the interface is shown in the position n = 2. ( b )  
The corresponding interface phase diagram. 

FfI+1- F" = -P(L+1 -A)  
= -2P(2n+ 1)H+4PJ+ ( a l h  + ~ ~ 2 h - ' ) w ' 1 +  (a3h2+ a4h-2)w2q1-2 

+(a#+ ag+ a7h-2)W2q'  (4) 
where, for n > 0, 

a1 = -(2n + 1)x4+2x2-2 
a2 = (2n - 1 ) x 4 + 2 ~ 2  
ag = -3(2n + l)q,x8- 41 + q1x4 

a 4 = $ ( 2 n  -1)q1xs+q,x4 (5) 
as = [( n +f)( q1 + 1)  + 4n + 1 1 2  - (4n + 3 ) P -  (41 - 3)x4 - 2 x 2 +  ( ql+ 1) 

a7 = [-(n -3)(q1+ 1) -4n + 5]x8+ (4n - 7 ) x 6 - ( q , +  1)x4+2x2 
a 6  = 2x6- 2x8 

n > 1 
a7 = -4(q1 + 1)2-  x6- (ql + 2 ) X 4 + 2 X 2  n = l  

and, for n = 0, 
2 

a l = - x 4 + x 2 - x - 2  a z = x  

a3 = - f q 1 X 8 + t q 1 X 4 - - L  2 q 1  x-4 

(Yg = t (ql  + 3)x8 - 2x6 - f (q l  - 5)x4-3x2+ 1 +;( 4, + 1)x-4 

(Y6 = x6- x4 a7 = -;(ql+ 1)x4. 

a4 = 4q1x4 
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The phase boundary is then given by 

(H/J ) , : ,+ l  =2/(2n + 1)+ ( H 1 / J ) w ~ ~ + ( H 2 / J ) w 2 ~ ~ - 2 s o W z q ,  

HI = (QlhO+ a2h;1)/2P(2n + 1) 

H2 = (a&+ a 4 h 3 / 2 P ( 2 n  + 1) 

H,=[a,hi+ (U,+a7h;2+((y:h;2-a(y:hi ) / (2n+ 1)]/2P(2n+ 1) 

where the Hi can be expressed in terms of the ai by 

ho=exp[-4PJ/(2n+ l)]. 

The phase boundaries are shown schematically in figure 2(b). Note that (H/J ) , : ,+ l  
initially decreases with increasing temperature. This is becuase the largest entropic 
contribution to the free energy is from spins which lie next to the boundaries, the 
number of which is increased as n decreases. Considering the series as an expansion 
in w it is apparent that there is only convergence for qL>2.  Therefore the situation 
for the simple cubic lattice is unclear-the layering transitions may be destroyed by 
roughening. 

A similar behaviour is seen when the lattice shown in figure 3 ( a )  is considered. 
This comprises stacked two-dimensional triangular nets with q1 nearest neighbours 
between spins on neighbouring planes. Let CY, p and ,y label the three axes of the 

a - 0 
1 

+ + + + + / -  - - 
+ + + + + + I -  - ,___. QJ / p  

%. . . -. . - 
p + + + + + + + -  = 

+ + + + + + + -  3 
++i-+i++- ; 

++i++++- ' 
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Figure 3. ( a )  A second choice of lattice and boundary conditions which leads to layering 
transitions at zero temperature. Spins depicted in bold type are fixed and the interface is 
shown in the position n = 2. (I, p and ,y label the axes of the triangular lattice. ( b )  The 
corresponding interface phase diagram. 
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triangular nets. The interface is introduced by fixing spins on intersecting planes 
parallel to (Y and /3 to lie in the state s, = -1. The spins interact through a Hamiltonian 

H = - J  sijsi',j - JD C si3j~i,,j- H C s1.J- JO si,jsi,j~ (9) 
4 , J  XvJ ' > J  ~ , J . J '  

where j ,  j '  label nearest-neighbour layers and i spins within a layer. 
In this case it is the competition between the diagonal interaction, JD, and the 

magnetic field, H, that drives the layering transitions. The degenerate interfaces lie 
diagonally across the corner defined by the boundary spins. We label as n the interface 
position where n diagonal rows of spins have been flipped to the state s, = -1. For 
example, n = 2 is shown in figure 3(a).  A simple comparison of the ground-state energy 
for interfaces with different values of n gives rise to boundaries 

( H / J ) f l  n i l  = 2 / ( n  + 1 )  (10) 

as shown in figure 3 ( b ) .  
To study the boundaries at finite temperatures we again perform a low-temperature 

series expansion. Using the definition of the Boltzmann factors given in (3),  together 
with 

y = exp(-2PJD) (11) 

one obtains an expression identical to (7) and (8) for the phase boundaries but with 
(2n + 1 )  everywhere replaced by ( n  + 1) and the a, given for n > 1 by 

a1 = -nX4y2-2x2+y2 

a2 = nx4y2 + y 2  

a3 = -inq,x8y4 - q1x4+ iq1y4 

a4 = inq1x8y4+iq,y4 

a5 = [ i n ( q ,  + 1 )  + (3n - l ) ]x8y4+ ( q1 + 3)x4 -3  41. + 3)y4 -2x4+ 2x6+ y2+ 4x6y2 

a6 = 2x2y4 - 2y4 

a, = [-$n(ql + 1 )  - (3n - 3)]x8y4 - f ( q l  + 3)y4 - 2x4y4+ 2( n - 1)x6y4 

- 2nx6y4 - 2x2 - 2x4y2 + 2~~~~ - ( n  - 1)x8y2 

+2x2y4+(n - 1)x8y2+y2 

whereas, for n = 1, a5 is replaced by 

as = i(ql + 5 l X s y 4 +  ( q ,  + 3 1 ~ 4 -  2x2 - p+ 3 +2x6y2 - 2y2 -i(ql + i ) y4  - 2x6y4- 2x4y2 

(13) + 2x2y4 - 2x4y4 - 2x6 + 2x6y2 

a2 = y2 

and, for n = 0, 

a, = -2x2+2-y-2 

a3 = -&X4 + 41. - iq1y-4 

a5 = ( q1 + 4)x4- q1 + f( q1 + l)y-4-4x2 -4x4y2+ 2x2y2+ 2x6y2-y-2+ 2x2y-2 - x4y-2 

a6 = 2x2y2 -2y2 

a 4  = f91Y4 (14) 

a7 = -i(ql+ 1)y4. 
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These are shown schematically in figure 3( b) .  In this case the boundaries curve towards 
larger values of ( H / J )  as the temperaure is increased. This is because the most 
important entropic contributions to the free energy come from spins lying adjacent to 
the interface. Hence large values of n are favoured. 

In this letter we have shown that interfaces which are constrained to turn a corner 
can show layering at zero temperature, even in models with only nearest-neighbour 
interactions. As very little attention has been paid to the interface geometries considered 
here, further research is likely to uncover other interesting types of behaviour. The 
interface transitions described are similar to faceting transitions in crystals and it would 
be of interest to look for layering in such materials. 
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